Kernel Regression Based Online Boosting Tracking
نویسندگان
چکیده
Although online boosting algorithm has received an increasing amount of interest in visual tracking, it is susceptible to class-label noise. Slight inaccuracies in the tracker can result in incorrectly labeled examples, which degrade the classifier and cause drift. This paper proposes a kernel regression based online boosting method for robust visual tracking. A nonlinear recursive least square algorithm which performs linear regression in a high-dimensional feature space induced by a Mercer kernel is employed to derive weak classifiers. Online sparsification to filter samples in feature space is adopted to reduce the computational cost of the recursive least square algorithm. In our method, weak classifiers themselves can be modified adaptively to cope with scene changes. Experimental results compared with several relevant tracking methods demonstrate the good performance of the proposed algorithm under challenging conditions.
منابع مشابه
L 2 Boosting in Kernel Regression 1
In this paper, we investigate the theoretical and empirical properties of L2 boosting with kernel regression estimates as weak learners. We show that each step of L2 boosting reduces the bias of the estimate by two orders of magnitude, while it does not deteriorate the order of the variance. We illustrate the theoretical findings by some simulated examples. Also, we demonstrate that L2 boosting...
متن کاملSparse Regression Modelling Using an Incremental Weighted Optimization Method Based on Boosting with Correlation Criterion
ABSTRACT A novel technique is presented to construct sparse Gaussian regression models. Unlike most kernel regression modelling methods, which restrict kernel means to the training input data and use a fixed common variance for all the regressors, the proposed technique can tune the mean vector and diagonal covariance matrix of individual Gaussian regressor to best fit the training data based o...
متن کاملBoosting Based Multiple Kernel Learning and Transfer Regression for Electricity Load Forecasting
Accurate electricity load forecasting is of crucial importance for power system operation and smart grid energy management. Different factors, such as weather conditions, lagged values, and day types may affect electricity load consumption. We propose to use multiple kernel learning (MKL) for electricity load forecasting, as it provides more flexibilities than traditional kernel methods. Comput...
متن کاملVisual Tracking using Kernel Projected Measurement and Log-Polar Transformation
Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...
متن کاملL2 boosting in kernel regression
In this paper, we investigate the theoretical and empirical properties of L2 boosting with kernel regression estimates as weak learners. We show that each step of L2 boosting reduces the bias of the estimate by two orders of magnitude, while it does not deteriorate the order of the variance. We illustrate the theoretical findings by some simulated examples. Also, we demonstrate that L2 boosting...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 31 شماره
صفحات -
تاریخ انتشار 2015